Information About Zener diode

A zener diode is a special kind of diode which allows current to flow in the forward direction in the same manner as an ideal diode, but will also permit it to flow in the reverse direction when the voltage is above a certain value known as the breakdown voltage, "zener knee voltage" or "zener voltage." The device was named after Clarence Zener, who discovered this electrical property. Many diodes described as "zener" diodes rely instead on avalanche breakdown as the mechanism. Both types are used. Common applications include providing a reference voltage for voltage regulators, or to protect other semiconductor devices from momentary voltage pulses.


A conventional solid-state diode will not allow significant current if it is reverse-biased below its reverse breakdown voltage. When the reverse bias breakdown voltage is exceeded, a conventional diode is subject to high current due to avalanche breakdown. Unless this current is limited by circuitry, the diode will be permanently damaged due to overheating. A zener diode exhibits almost the same properties, except the device is specially designed so as to have a greatly reduced breakdown voltage, the so-called zener voltage. By contrast with the conventional device, a reverse-biased zener diode will exhibit a controlled breakdown and allow the current to keep the voltage across the zener diode close to the zener breakdown voltage. For example, a diode with a zener breakdown voltage of 3.2 V will exhibit a voltage drop of very nearly 3.2 V across a wide range of reverse currents. The zener diode is therefore ideal for applications such as the generation of a reference voltage (e.g. for an amplifier stage), or as a voltage stabilizer for low-current applications. Another mechanism that produces a similar effect is the avalanche effect as in the avalanche diode. [1] The two types of diode are in fact constructed the same way and both effects are present in diodes of this type. In silicon diodes up to about 5.6 volts, the zener effect is the predominant effect and shows a marked negative temperature coefficient. Above 5.6 volts, the avalanche effect becomes predominant and exhibits a positive temperature coefficient.


Zener diodes are widely used as voltage references and as shunt regulators to regulate the voltage across small circuits. When connected in parallel with a variable voltage source so that it is reverse biased, a zener diode conducts when the voltage reaches the diode's reverse breakdown voltage. From that point on, the relatively low impedance of the diode keeps the voltage across the diode at that value.

More items… Can you submit more information?

Powered By How It Works

20th Jan 2015

Recent Posts