Information About Wireless sensor network

Wireless sensor network (WSN)

A wireless sensor network (WSN) consists of spatially distributed autonomous sensors to monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants and to cooperatively pass their data through the network to a main location. The more modern networks are bi-directional, also enabling control of sensor activity. The development of wireless sensor networks was motivated by military applications such as battlefield surveillance; today such networks are used in many industrial and consumer applications, such as industrial process monitoring and control, machine health monitoring, and so on. The WSN is built of "nodes" – from a few to several hundreds or even thousands, where each node is connected to one (or sometimes several) sensors. Each such sensor network node has typically several parts: a radio transceiver with an internal antenna or connection to an external antenna, a microcontroller, an electronic circuit for interfacing with the sensors and an energy source, usually a battery or an embedded form of energy harvesting. A sensor node might vary in size from that of a shoebox down to the size of a grain of dust, although functioning "motes" of genuine microscopic dimensions have yet to be created. The cost of sensor nodes is similarly variable, ranging from a few to hundreds of dollars, depending on the complexity of the individual sensor nodes. Size and cost constraints on sensor nodes result in corresponding constraints on resources such as energy, memory, computational speed and communications bandwidth. The topology of the WSNs can vary from a simple star network to an advanced multi-hop wireless mesh network. The propagation technique between the hops of the network can be routing or flooding.[1][2] In computer science and telecommunications, wireless sensor networks are an active research area with numerous workshops and conferences arranged each year.


Area monitoring

Area monitoring is a common application of WSNs. In area monitoring, the WSN is deployed over a region where some phenomenon is to be monitored. A military example is the use of sensors to detect enemy intrusion; a civilian example is the geo-fencing of gas or oil pipelines. When the sensors detect the event being monitored (heat, pressure), the event is reported to one of the base stations, which then takes appropriate action (e.g., send a message on the internet or to a satellite). Similarly, wireless sensor networks can use a range of sensors to detect the presence of vehicles ranging from motorcycles to train cars.

Environmental sensing

The term Environmental Sensor Networkshas evolved to cover many applications of WSNs to earth science research. This includes sensing volcanoes ,oceans , glaciers, forests , etc. Some othe major areas are listed below.

Air pollution monitoring

Wireless sensor networks have been deployed in several cities (Stockholm, London or Brisbane) to monitor the concentration of dangerous gases for citizens. These can take advantage of the ad-hoc wireless links rather than wired installations, which also make them more mobile for testing readings in different areas. There are various architectures that can be used for such applications as well as different kinds of data analysis and data mining that can be conducted.

Forest fires detection

A network of Sensor Nodes can be installed in a forest to detect when a fire has started. The nodes can be equipped with sensors to measure temperature, humidity and gases which are produced by fires in the trees or vegetation. The early detection is crucial for a successful action of the firefighters; thanks to Wireless Sensor Networks, the fire brigade will be able to know when a fire is started and how it is spreading.

Greenhouse monitoring

Wireless sensor networks are also used to control the temperature and humidity levels inside commercial greenhouses. When the temperature and humidity drops below specific levels, the greenhouse manager must be notified via e-mail or cell phone text message, or host systems can trigger misting systems, open vents, turn on fans, or control a wide variety of system responses.

Landslide detection

A landslide detection system, makes use of a wireless sensor network to detect the slight movements of soil and changes in various parameters that may occur before or during a landslide. And through the data gathered it may be possible to know the occurrence of landslides long before it actually happens.

Industrial monitoring

Machine health monitoring

Wireless sensor networks have been developed for machinery condition-based maintenance (CBM)as they offer significant cost savings and enable new functionalities. In wired systems, the installation of enough sensors is often limited by the cost of wiring. Previously inaccessible locations, rotating machinery, hazardous or restricted areas, and mobile assets can now be reached with wireless sensors.

Data Logging

Main article: Data logging

Wireless sensor networks are also used for the collection of data for monitoring of environmental information, this can be as simple as the monitoring of the temperature in a fridge to the level of water in overflow tanks in nuclear power plants. The statistical information can then be used to show how system have been working.

Water/wastewater monitoring

There are many opportunities for using wireless sensor networks within the water/wastewater industries. Facilities not wired for power or data transmission can be monitored using industrial wireless I/O devices and sensors powered using solar panels or battery packs and also used in pollution control board.


Using wireless sensor networks within the agricultural industry is increasingly common; using a wireless network frees the farmer from the maintenance of wiring in a difficult environment. Gravity feed water systems can be monitored using pressure transmitters to monitor water tank levels, pumps can be controlled using wireless I/O devices and water use can be measured and wirelessly transmitted back to a central control center for billing. Irrigation automation enables more efficient water use and reduces waste.

Structural monitoring

Wireless sensors can be used to monitor the movement within buildings and infrastructure such as bridges, flyovers, embankments, tunnels etc... enabling Engineering practices to monitor assets remotely without the need for costly site visits, as well as having the advantage of daily data, whereas traditionally this data was collected weekly or monthly, using physical site visits, involving either road or rail closure in some cases. It is also far more accurate than any visual inspection that would be carried out.

On-site tracking of materials

Since the cost of ownership of wireless sensors is lowering it will provide the opportunity to track and trace large and expensive products, but also small and cheap products, creating intelligent products.


The main characteristics of a WSN include

  • Power consumption constrains for nodes using batteries or energy harvesting
  • Ability to cope with node failures
  • Mobility of nodes
  • Dynamic network topology
  • Communication failures
  • Heterogeneity of nodes
  • Scalability to large scale of deployment
  • Ability to withstand harsh environmental conditions
  • Ease of use
  • Unattended operation
  • Power consumption

Sensor nodes can be imagined as small computers, extremely basic in terms of their interfaces and their components. They usually consist of a processing unit with limited computational power and limited memory, sensors or MEMS (including specific conditioning circuitry), a communication device (usually radio transceivers or alternatively optical), and a power source usually in the form of a battery. Other possible inclusions are energy harvesting modules, secondary ASICs, and possibly secondary communication devices (e.g. RS-232 or USB). The base stations are one or more components of the WSN with much more computational, energy and communication resources. They act as a gateway between sensor nodes and the end user as they typically forward data from the WSN on to a server. Other special components in routing based networks are routers, designed to compute, calculate and distribute the routing tables. Many techniques are used to connect to the outside world including mobile phone networks, satellite phones, radio modems, long-range Wi-Fi links etc. Many base stations are ARM-based running a form of Embedded Linux.

More items… Can you submit more information?

power by how it works

20th Jan 2015

Recent Posts