Information About LIDAR

LIDAR (Light Detection And Ranging, also LADAR) is an optical remote sensing technology that can measure the distance to, or other properties of a target by illuminating the target with light, often using pulses from a laser. LIDAR technology has application in geomatics, archaeology, geography, geology, geomorphology, seismology, forestry, remote sensing and atmospheric physics,[1] as well as in airborne laser swath mapping (ALSM), laser altimetry and LIDAR contour mapping. The acronym LADAR (Laser Detection and Ranging) is often used in military contexts. The term "laser radar" is sometimes used, even though LIDAR does not employ microwaves or radio waves and therefore is not radar in the strict sense of the word. LIDAR uses ultraviolet, visible, or near infrared light to image objects and can be used with a wide range of targets, including non-metallic objects, rocks, rain, chemical compounds, aerosols, clouds and even single molecules.[1] A narrow laser beam can be used to map physical features with very high resolution. LIDAR has been used extensively for atmospheric research and meteorology. Downward-looking LIDAR instruments fitted to aircraft and satellites are used for surveying and mapping – a recent example being the NASA Experimental Advanced Research Lidar.[2] In addition LIDAR has been identified by NASA as a key technology for enabling autonomous precision safe landing of future robotic and crewed lunar landing vehicles.[3] Wavelengths in a range from about 10 micrometers to the UV (ca. 250 nm) are used to suit the target. Typically light is reflected via backscattering. Different types of scattering are used for different LIDAR applications; most common are Rayleigh scattering, Mie scattering and Raman scattering, as well as fluorescence. Based on different kinds of backscattering, the LIDAR can be accordingly called Rayleigh LiDAR, Mie LiDAR, Raman LiDAR and Na/Fe/K Fluorescence LIDAR and so on.[1] Suitable combinations of wavelengths can allow for remote mapping of atmospheric contents by looking for wavelength-dependent changes in the intensity of the returned signal.

More items… Can you submit more information?

power by how it works

20th Jan 2015

Recent Posts